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My project idea is to find trends in how NBA players and their relationships affect their decisions when

choosing teams in free agency.

I. Abstract

Using a “minibatch” approach, I generated a model that was able to predict whether two players would

end up on the same team with (almost) significantly higher accuracy than random chance. Of the variables

examined, three-point volume incompatibility appears to have the most notable effect, followed by years

played as teammates and age difference. However, when applying these findings to trios of players, no

statistical effect from triadic closure could be found. Interestingly, there does exist a noteworthy

phenomenon where trios of players in which two pairs have scores above a certain threshold have

disproportionately many occurrences of the least close pair ending up on the same team. Although the

reasons for this trend are not sufficiently addressed here, it could be an interesting topic to address in

future research.

II. Introduction

Originally, I was inspired by the concept of triadic closure and the idea that the relationships between two

nodes could indirectly influence their neighbors. In the NBA, every summer, players whose contracts end

enter what is known as “free agency”, where they are free to renew their contract with their current team

or sign a new contract with any other team. In this context, I was curious whether two players who each

have a relationship with a third player are more likely to join the same team in free agency than two

randomly chosen players. For example, if Player A is “close” with both Players B and C, would Players B

and C be more likely to become teammates? To answer this, I first needed to determine what quantifiable

factors affect whether two players join the same team, or their “closeness”. Once I did so, I could then

explore the triadic closure aspect: how players’ direct and indirect relationships affect their decisions.
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III. Data Collection

After much brainstorming, I came up with the following possible input factors:

- years as NBA teammate

- age difference (integer division by 1000 days or about 3 years)

- same last name

- same jersey number

- same college alma mater

- same international region (USA vs nonUSA)

- 3-pointer volume incompatibility

- free throw volume incompatibility

Luckily for me, I had already had some work done. For a previous personal project, I scraped box score

data that actually turned out really useful for this NBA teammate data. I wrote an R script to consolidate

my dataset as well as a Python program to summarize it into a table that I could refer to for this project.

One unexpected difficulty here was that because I would be evaluating players for each free agency

period, I needed to create a separate spreadsheet for the values after every season. For example, Tim

Duncan and Tony Parker played 13 seasons together throughout their careers, but if I were to predict

Duncan’s behavior after the 2005-06 season, I would prefer to know that they only had played together a

couple seasons by then, which indicates a weaker bond at the time than near the end of their careers. As

such, I ended up creating about 20 very large but sparse spreadsheets.

For the remainder of the player network data, I was extremely fortunate to find two very well-structured

and cleaned datasets on Kaggle. From this SQLite database (which I had never used before) and

collection of spreadsheets, I was able to extract a lot of data regarding player attributes and performance.

In addition, I decided to include additional input variables corresponding to the squares of the teammate

years and age differences columns; I don’t think the relationship between those two variables and the

label is linear, so I wanted to add the flexibility of a quadratic term.

The last thing to collect was the labels. One approach could have been to compile all players entering free

agency each year and to find individually where each player ended up signing. However, this would have

been very computationally expensive. For simplicity, I decided to focus only on players that changed

teams between two years; that is, they played for exactly one team in year x and exactly one different

team in year x+1. This is of course a strong simplification, but it works because moving during free

agency is essentially the only way a player can play for only one team in one year and another the next, so
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we can assume that the two lists of players are mostly equivalent. Importantly, because the analysis is

focused exclusively on players joining other players, irregardless of location, the choice to omit the

players who stayed with their team in free agency does not affect our analysis. From here, it was just a

matter of writing another Python script to generate data points and then modify and consolidate the

column data from a variety of sources into a single input matrix format with a total of 82365 entries.

IV. Definitions

For the sake of clarity in the remainder of this paper, I will address some possible ambiguities. First, there

is no reasonable way to accurately document the relationship of every pair of players in the last two

decades. Thus, I narrowed down the focus of this project to finding quantifiable and accessible features

that could possibly affect the players’ choices. In the remainder of this paper, the “closeness” of two

players will be directly related to the likelihood that they would end up on the same team the following

year if given the opportunity, as opposed to how close of friends they are in real life.

In addition, the input data includes 3-pointer volume and free three volume “incompatibilities”, which I

define using the following formulas, respectively:
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idea is that certain players are considered sharpshooters or ball-dominant players and thus have a high

volume of three-pointers and free throws, respectively. However, teams usually tend not to have multiple

sharpshooters or multiple ball-dominant players, because their play styles often conflict and result in

inefficient offense. Thus, higher values of three-point incompatibility result when two players either both

shoot threes at a high volume or both do most of their work away from the perimeter, which can clog up

the paint for the other players. The reasoning for free throw incompatibility follows similarly.

Finally, “positive outcomes”, “successful data points”, and “1 labels” will be used interchangeably to refer

to two players entering free agency and ending up on the same team the following year.
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V. Results — Regression Analysis

The first task was to find which input columns were the most relevant to evaluating whether a pair would

join the same team. For this, the greatest challenge was the imbalance of the data labels: roughly 97.5% of

the labels were 0. Thus, running logistic regression as is would result in predictions of all 0’s, and the

resulting 97.5% accuracy wouldn’t be helpful at all. One common way to mitigate this issue is to

construct artificial ‘1’-labeled points based on the existing data, but because this dataset is so noisy, I

believe that this approach would do more harm than good. I eventually decided on a “mini-batch”

approach of sorts: I generated many temporary “sub-datasets” containing all of the 1-labeled data points

and an equal number of randomly sampled 0-labeled data points, and then ran logistic regression on these

sub-datasets. For each iteration, I extracted and stored the weights, and at the end I took the mean of the

stored values as my “average regression” coefficients. From there, I applied the weights and sigmoid

function to the entire dataset to generate my final predictions. This “average” approach was conceived to

take advantage of the Law of Large Numbers and assumed that as the number of sub-datasets increased,

the averaged coefficients would converge to the “true” values.

As a sanity check, let’s first examine the coefficients that our approach generated:

Figure 1: “averaged regression” coefficients

Fortunately, all of the coefficients appear reasonable. For instance, the coefficients corresponding to

3-pointer and free throw incompatibility have negative signs, which matches our hypothesis for why we

included the two variables in the first place. In addition, the plots of the contributions of both teammate

years and age difference aligns with expectations: being teammates for many years facilitates a strong
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relationship, and being around the same age allows players to mesh better on the court and bond more off

the court.

Figure 2: visualization of quadratic coefficients

To me, the most surprising result was the dummy regarding having the same last name, with a relatively

large coefficient of 0.17. However, upon further inspection, there were only 164 data points where this

condition was true, which implies that overfitting was occurring to some degree.

This evokes the question of which of these coefficients can be considered significant. When I ran the

regression iterations in R, I could see which inputs were considered to have a real effect for that particular

instance. Over many iterations, I noticed that the 3-pointer incompatibility coefficient was regularly

denoted as statistically significant; the coefficients for teammate years and age difference sometimes were

as well.

Figure 3: statistical significance of coefficients (R output)
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Returning to the model, the results were optimistic. Out of the 82000+ data points, the averaged model

predicted a positive result 53.54% of the time and a negative result 46.46% of the time, which is close to

the 50-50 split expected from the approach I used. However, due to the natural distribution of the dataset

labels, the fact that I did not predict ‘0’ 97.5% of the time removes the possibility of achieving a good raw

accuracy (by any possible definition of “good”). The best I can hope for is that the model was able to

perform better than random chance; that is, if I were to blindly predict ‘1’ with probability 53.54%, what

are the chances of achieving the same or better results as the trained model?

Because the random chance model predicts blindly, we can compare the results for the 1-labeled and

0-labeled data points separately. In total, there were 2048 positive data points, and the model correctly

predicted 1133 of them, giving an accuracy of 55.32%. On the other hand, there were 80317 negative data

points, with the model correctly predicting 37354 of them and yielding a 46.51% accuracy. These

accuracy values aren’t very reassuring, but the results were still notable: for the positive data points, the

random model would have performed at least this well with probability of only 5.50%. While this isn’t

technically statistically significant, it provides optimism that these specific variables indeed provide some

insight into players’ free agency decisions.

Thus, for the remainder of this paper, I will calculate the “closeness” score as the pre-sigmoid linear

combination value using these coefficients, normalized to be between 0 and 1; that is:

where and are the minimum and maximum calculated values, respectively. After normalization,𝑠
𝑚𝑖𝑛
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the average score is about 0.4152, with a relatively narrow standard deviation of 0.033.

VI. Results — Triadic Closure

Now that I have weights, I can explore the main focus of the project: whether triadic closure has an effect

on our output labels. First, I wanted to confirm that our calculated scores translated well to a model

evaluating trios instead of pairs. To do so, I needed to determine a good subset of players to test this on.

Eventually, I decided on triples of players who were all entering free agency at the same time, played on

different teams the year before, and eventually changed teams during that free agency period. This subset

was desirable because it generated triples of players in which all three players were on the move, which
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reduced the effects of team-specific factors on our data. In total, there were more than 84000 trios of

players from 2006-2016 that matched that description.

To perform our check, I iterated through all trios where exactly one of the three pairs in those trios was a

positive outcome and then noted the relative scores of those three pairs. Fortunately, the results somewhat

matched expectations: the positive pair was the highest scoring 34.8% of the time, compared to 32.6%

and 32.7% for the middle and lowest scoring pairs. This indicates that our “averaged regression” model

coefficients hold for both pairs and trios.

In addition, the highest scoring pair theoretically is more likely to end up on the same team than random

chance; that is, better than a 1 in 30 chance. Interestingly, about 3.57% of the trios were successful, which

is significantly better than the 3.33% that was expected. In a randomized trial with 1/30 probability, this

outcome of 2529 successful out of 70851 would only occur 0.03% of the time, so this result was quite

encouraging. Bucketing across years, the results are very volatile with percentages ranging from 1.9% to

6.2%, so it’s unlikely to find any worthwhile insight there.

Figure 4: prediction success across the years

With the confirmation out of the way, I now explored the network effects aspect. In particular, I focused

on the two higher scores of each trio. If triadic closure were to have an effect on whether players ended up

on the same team, we would note a significant difference in those scores between positive and negative

data points. To compare, I generated a pivot table to compare the geometric mean of the two higher scores

across the two possible labels:
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Figure 5: scores of other two pairs for pairs that joined vs pairs that didn’t

At first glance, the results appear promising, as the average score is higher for the ‘1’ label. However,

two-sample hypothesis testing yields a z-score of just 0.19, leading to an unspectacular p-value of 0.423.

Another way with which I approached triadic closure was to filter out trios where the two higher scores

were both above various thresholds and to see whether the frequency of positive outcomes for the least

close pairs is significantly higher than the rest of the population. For a few thresholds between 0.42 and

0.45, I compared the raw success of trios that met or didn’t meet the threshold, keeping in mind the

benchmark random probability of 1 in 30, or 0.333%. Theoretically, the raw success rates would be higher

for trios that met the benchmark requirements.

Figure 6: raw success rate for various thresholds

Unfortunately, nothing here can be considered statistically significant. Notably, however, the success rate

counterintuitively is lower for the trios that meet the threshold across the board, although the difference is

negligible. There also appears to be a steep drop-off between 0.44 and 0.445, but this can be attributed to

the sample size decreasing by about 50% between those two checkpoints.

To wrap up this analysis, I attempted one last test: I filtered out trios in which exactly one of the pairs had

a positive outcome to see how often the lowest pair was the one that was successful. In theory, the

regression results from earlier imply that this value should be lower than 1/3, as the other two pairs have

higher scores and should be more likely to have positive outcomes. However, triadic closure could mean
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more successes for the pairs with the lowest score within each trio at the expense of the higher scoring

pairs, and the results were actually incredibly interesting:

Figure 7: relative success rate for various thresholds

There are two major takeaways from this chart: one, that, for a sweet spot around 0.435, there’s a

statistically significant difference for the trios that had two pairs of players above the threshold; and two,

that there’s also a statistically significant difference for the trios that had two pairs of players score above

0.45, with abysmal numbers mirroring the ones in Figure 6. The first result is exactly what one would

expect if triadic closure is a thing, but the second result casts some doubt as to why the proportion of

successes has a quasi-quadratic relationship with the threshold values.

I thought a lot about possible theories why, but I couldn’t figure out any valid reasons how a clear trend

emerges in such a noisy dataset, especially when earlier tests appear to indicate no effect. One possibility

I considered was that some of the inputs to the linear regression might have been adversarial in trios: that

is, for example, players that are both highly 3-pt-incompatible with a third player are more likely to be

compatible. However, the numbers don’t back this, as the average lowest score fluctuates minimally

between different threshold values (standard deviation is about 0.02).

Figure 8: average lowest score for various threshold ranges
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I’m not sure how much valuable insight I can expect to gain from applying a noisy regression model to a

noisy dataset of trios of players, but I think it may be worthwhile in the future to reexamine this trend and

perhaps show mathematically whether it’s trivial or not.

VII. Limitations

There were a few noteworthy shortcomings in this analysis. First, the dataset was extremely sparse and

noisy, so it was very difficult to extract actionable insights on player decisions, as expected. However,

there were still some meaningful findings that could be examined more in detail in future analysis. In

addition, the vast majority of the analysis did not take longitudinal trends into account, such as the rise of

3-point shooting in the past decade or so. It could be worthwhile to segment the data by year to more

accurately describe the state of the league. Finally, in the data acquisition and modification phase, the

inputs to the logistic regression had about 11000 unusable data points, about 10% of the total scraped

dataset. However, the missing data did not appear to be related, so it likely did not have any effect on the

analysis.
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