
Predicting the String Played by a Cellist through Edge

Detectors, Hough Transforms, and k-Nearest

Neighbors

Kenny Huang and Iroha Shirai

December 14, 2021

1 Motivation/Goal

This project was motivated by our backgrounds in music and our interest in combining this with
the concepts that we learned throughout the course. We wanted to explore the topic of object
recognition, so we thought about how we could detect the sounds being produced on an instrument
just from the visual video of the instrument being played.

We had originally started off with the hope that we could predict the note that a violinist was
performing, but found that it was much harder to predict this because of the limitations in how
much of the violin’s ‘face’ could be seen with a given camera position – given that the violin is
often held facing the ceiling at an angle from the camera. We also found that it was challenging
for our purposes because it is much harder to detect the location of where the fingers are placed
on the fingerboard, given the size of the instrument and issues with occlusion.

With these challenges, in addition to the short time frame provided to work on this final project,
we decided upon our final goal: to predict the string that a cellist is playing on based on only visual
data using feature detection and a k-nearest neighbors model.

2 Related work

Some related work to our project topic includes the Visual Music Transcription of Clarinet Video
Recordings Trained with Audio-Based Labelled Data paper which focuses on the automatic process
for transcribing the notes that a clarinetist is playing based on the visual knowledge provided in
the video of a person playing the clarinet [1]. The Sound of Pixels project is also related to our
work in that it uses only a visual of instruments being played to disentangle the associated sounds
and ultimately determine which sounds are being produced by each individual instrument [2].

Our work is unique from these related works because not only does it focus on a different
instrument — a cello— but it also focuses on determining the string that is being played based on
the angles of the lines that represent the bow and fingerboard.

1



3 Approach

Our main approach to reach our goal is to:

1. detect the lines corresponding to the bow and fingerboard of the cello

(a) optimize our custom Hough transform function

2. calculate the angles of the two lines detected (denoted as theta)

3. train a k-nearest neighbors model on the two theta values

4. use the model to predict the string being played in unseen data

As part of this enumerated approach, we needed to create our own dataset of labeled images so
that we could create the necessary data to train the model used in step 3.

4 Design Decisions

The key design decisions that we had to make in order to reach our goals included:

4.1 Framing around the cello

We had originally thought to use the entire video frame as the input of our model. However, we
quickly found that this was too ambitious of a goal because the noise in the background often made
it impossible to accurately detect the features that we needed. Thus, we decided to limit the input
of our model to videos where the majority of the video frame is composed of the cello.

4.2 Hough Transform

We assumed that the white hair of the bow and the strings over the fingerboard would be straight
lines so that we could use a Hough transform to find them. Using the Hough transform was
an important design decision because it allowed us to easily and accurately find the bow and
fingerboard, although runtime concerns did limit the resolution of the video that we could look at.

4.3 k-Nearest Neighbors

There are only four possible predictions when predicting the string being played: A, D, G, or C —
the 4 strings on the cello. In addition, we have two values that we are able to acquire: the theta
of the bow detection line and the theta of the fingerboard detection line. Given these conditions,
we felt that k-Nearest Neighbors was the most efficient classification model to use. We were only
considering 2-dimensional data, so we did not have to worry about the vulnerability of the KNN
method toward the curse of dimensionality.

2



5 Implementation

5.1 Dataset

We were not able to find any datasets composed of photos of people playing the cello, let alone
ones with each photo labeled with what string is being played. Therefore, we decided to create our
own labeled dataset.

In order to do so, we manually collected photos by going to YouTube and looking up keywords
including ‘cello’, ‘cellist’, and ‘cello player’. Our method required us to have a good view of the
cello, making sure 1) that most of the cello body was in view, 2) that the cellist did not move
around too much during the performance, and 3) that the video was taken with the camera as
close to directly facing the cellist as possible. Therefore, the videos that we could use were quite
limited. However, we managed to collect 132 photos in total, all of which by taking screenshots of
the YouTube videos at certain frames where we could confidently determine what cello string was
being played. (The YouTube videos used for this data collection process are listed at the end of
this paper.) The screenshots were taken not of the entire video frame, but rather as a rectangle
around the cello, including the fingerboard and the bow.

Figure 1: Example images from our test set

3



5.2 Detect the lines corresponding to the bow and on the fingerboard of the
cello

To detect the fingerboard and bow, we first noted that both of these features are straight, ex-
tended lines that are roughly vertical and horizontal respectively. We converted the input image to
grayscale and then applied a custom modified edge detector to outline the contours of the image
from the x-direction. At this point, the brightness of each pixel represented its change from its
neighbors on its left and right in the original image.

Figure 2: Edge detectors applied to a test image

From here, we assumed that the strings on the fingerboard would be straight lines and used a
Hough transform to find the lines that contained the most pixels above a predetermined threshold.
In theory, the pixels corresponding to the fingerboard in the original image both differ from their
neighbors and lie on a straight line. Therefore, the Hough transform should output a line parallel
to the axis of the fingerboard. Similarly, we can apply an edge detector from the y-direction and
then use a Hough transform to find the white hair of the bow. Again, the pixels of the bow contrast
with the pixels directly above and below and lie on a straight line, so the Hough transform should
output a line through the hairs of the bow.

We were able to implement the above functions in part detection.py, one of our python files.
The width and standard deviation parameters of the two edge detectors were then decided through
inspection. As we hoped, the model was able to successfully detect the bow and fingerboard of the
cello on most of the frames in our test video as well as on 108 photos of the 132 photos collected in
our dataset, leading to 82% accuracy on detecting the lines that represent the bow and fingerboard
in an image.

5.3 Optimize our custom Hough transform function

One issue that we encountered was that the Hough transform was incredibly slow when we ran it
with the sensitivity that we needed to accurately detect the features. Unfortunately, the premade
function in cv2 was not working for us, so with help from the OpenCV documentation [3], we wrote
our own custom Hough transform script, which lacked optimizations that the cv2 version may have
had. In the first version of our code, a vote was cast for the line corresponding to each possible

4



Figure 3: Detected bow and fingerboard lines on test images

angle in [0, π] for each pixel in the image. Because we wanted the resolution of our output angle to
be one degree, this meant that our function had a runtime of ∼ 180mn, which took more than 300
seconds for 60 frames (2 seconds of video). As a result, testing became incredibly time consuming,
so we sought to optimize our function for our purposes. Creating our own function actually worked
to our advantage here by allowing us more flexibility.

Specifically, we had previously made the assumption that our input would be pre-processed
such that the majority of the video frame is composed of the cello. This specification allowed us
to assume that the bow and fingerboard would only be in certain sections of the image, allowing
us to ignore large swaths of pixels. In addition, we also recalled that we chose to analyze the cello
because we could assume that between frames, the fingerboard and bow would only change by a
negligible amount. Thus, by passing in additional parameters reporting the output values of the
previous frame, we were able to drastically reduce the number of possible lines to try. Now, we
were able to compile 600 frames’ worth of video in less than 120 seconds, or about 5 fps.

One final issue that we ran into at this stage was the inflexibility of the model when it became
wrong. Although adding the information about previous frames greatly stabilized our model and
reduced the noise of the predictions, it also prevented the model from being able to correct itself back
to the ground truth if it did somehow go off course. To remedy this, we allowed it to “reset” every
second and compute its outputs without previous information. Although this marginally increased
runtime, this made our model more robust to both random noise and catastrophic failure.

5.4 Calculate the theta values related to the lines detected

Once our model was able to detect the two features in the images in our dataset, we sought to use
the relative angles between the two lines to make our final string predictions. To do so, we ran our
model on our dataset of test images and extracted the angles of the detected lines from the images
that we manually verified were detected properly. To address the discontinuity of the bow angles
at 0 and π, we transformed it to be centered around π/2 instead.

5.5 Train a k-nearest neighbors model on the two theta values

Using the resulting dataset composed of only the properly detected images, we generated a k-nearest
neighbors model on the two theta values calculated (one for the theta of the fingerboard, and one
for the modified theta of the bow). When training, we split up our dataset so that 80% of the
dataset was used for training and 20% was used for testing. Using leave-one-out cross-validation,
we found that k = 11 yielded the best results, with validation accuracy of 70%.

5



Figure 4: Cross validation accuracy plot

Figure 5: Cross validation accuracy table

Using k = 11, we were able to create a model with 72% test accuracy (albeit on a relatively
small sample size).

Use the model to predict the string being played in unseen data Once we have our detection
function and classification function, we are able to actually predict the strings played in our test
images. To test this, we generated the predictions for an entire video and overlaid it on top. We
were pleased to see that the model was able to determine the string being played throughout the
video, even when it changed.

Figure 6: Final outputted video

6



6 Results

In the end, we were able to complete a pipeline that takes in a visual input and outputs a prediction.
The pipeline has two main components: a feature extraction phase using an edge detector filter
and a Hough transform, and a k-nearest neighbors classification system. Due to a limited dataset
size, we are only able to roughly estimate the error of both phases, from which we can approximate
the overall success of our model.

Out of the 132 photos that we added to our dataset, 108 were manually deemed as properly
detected, giving us an accuracy of about 82%. Looking at the leave-one-out cross validation ac-
curacy of the KNN model, we can see that using k=11 gives a validation accuracy of 70%, which
when applied to the entire training set yields a testing accuracy of 73%. Below, we included a plot
of the decision boundaries of the strings [4].

Figure 7: Decision boundary plot of knn model

Assuming that the errors are independent, we can estimate our overall accuracy as about 57%.
However, when evaluating the accuracy of the model on continuous video, the common features of
the values allows the model to perform better than this baseline expectation. For instance, the fact
that the optimized model uses the previous frame’s output should improve the accuracy of the first
phase from the randomly sampled accuracy of 82%. In future work, expanding the dataset would
allow proper testing and a more representative true accuracy of our model.

7



7 Strengths and Weaknesses of our System

7.1 Strength: Detects the bow and fingerboard accurately:

We were able to use a custom modified edge detector and the Hough Transform to predict the bow
and fingerboard to a high level on a wide variety of photos.

7.2 Strength: Optimization:

Though not yet in real time, we were able to optimize our model to run significantly faster by
limiting the area where the next line can potentially be detected. As discussed earlier in Section
5.2, this optimization leads to a great deduction in run time.

7.3 Limitation: Video Frame Size:

Our method only works on videos whose video frame is mostly composed of the cello instrument
itself. As we discussed previously in this paper, this was a design decision that we had to make
due to the nature of our model using Hough transform to detect the bow and fingerboard. This is
a weakness because this means that with the current model, we can only run it on videos after the
videos are cropped around the cello.

7.4 Limitation: Restriction on Cellist’s Movement:

Relating to this limitation of cropping around the cello, our model may also not work well if
the cellist frequently moves around within the video. This is because we add an optimization
to our method that only looks at certain portions of the video in order to reduce the run time.
Therefore, if the cellist moves around a lot, then the model may not be able to find the bow and/or
fingerboard within the frame that they expect the items to be in, leading to incorrect predictions
or no predictions at all.

This limitation can be solved by setting the optimization parameter within our detect both()
function to False. However, we would like to point out that this will lead to a 25x increase in
runtime (from 0.2 seconds per frame to 5 seconds per frame). This is due to the model now going
through the entire image, rather than certain subsections that it expects the objects to be at.

7.5 Limitation: Small dataset size:

Due to the limitation in the short amount of time we had to work on this final project, we were
unable to create a large dataset. We did our best, but we recognize that this is a limitation on our
prediction model and hope that in the future we can retrain our model on a larger dataset size.

8 Conclusion

In conclusion, we were able to create a k-nearest neighbors model that predicted the string being
played by a cellist well. We were able to use our model on a 30 second video, and found that it
performed satisfactorily according to the eye test. From testing the underlying classification model,
we expect the accuracy to be about 70

Through this project, we learned more about the topics that we used in our project — such as
object detection and Hough Transforms — because we had to think beyond the concept we studied
in class in order to actually implement it in our project. In addition, there were many topics that we

8



considered but ended up not implementing, including perspective projection and camera geometry.
Thinking about these topics was also sufficient in helping us better understand the course material
in a new light.

In addition, we found how important it was to define the scope of the project. The project idea
that we began with was very broad and ambitious, and we quickly found the difficulty of working
with such a broad topic because there were so many paths and steps to consider, let alone the
time limit we had with this project being due by mid-December. Thus, this project reinforced the
importance of having a clear and feasible topic to work on so that it was easier to begin working
with.

We also learned the difficulty in using various open-source APIs and libraries— specifically,
OpenPose and MediaPipe. Though we did not end up using it, we encountered various problems
with using the libraries while we were considering using them in our project. As simple as the tools’
websites made it seem, we encountered countless bugs that prevented us from ever using them.

Lastly, we also learned how time consuming it was to create a dataset. Creating the dataset
required finding a YouTube video that fit our criteria, as well as screenshotting and labeling of
videos. Even so, the amount of time we spent only amounted to 138 photos. We definitely feel
more grateful for the cleaned and labeled datasets available to us now!

9 Future Work

We feel that there are some exciting new paths to consider in the future, given this baseline model
that we were able to get working.

9.1 Flexibility in Video Input

As discussed in the strengths/weaknesses section, our current model is limited to videos closely
cropped around the cello. Working on a method that detects bows and fingerboards well regardless
of cello placement would make this model much more flexible and applicable. One way to do so
would be to train a CNN on a sufficiently large labeled dataset of cellos so that it is able to localize
the cello on its own, at which time our current model can be applied.

9.2 Running in Real Time

Although we were able to greatly reduce the runtime of our model and compile at a rate of 5 fps, we
would have liked it to be able to take in videos at 30 fps and be able to output the string prediction
in real time. To do so, we would need to further optimize our Hough transform function or acquire
more computational power.

9.3 View from Different Camera Angles

Our current model requires that the cellos be seen from the front of the cello; the video can not be
taken from the side. This means that the string being played can not be well detected in videos
that have been taken from other angles. Being able to detect the string played from a larger range
of angles would greatly increase the applicability of our string detection method.

9.4 Detect Notes Played

This was our original stretch goal, but we didn’t have time to fully explore the idea. Assuming
that the cellos have been tuned to the correct frequency, it would be possible to detect the note

9



being played on the cello by looking at where a cellist’s finger is placed on the fingerboard. Given
that we were able to detect the string being played, a reasonable next step would be to detect the
location of where the finger is placed and predicting the note played based on this location.

9.5 Train for Violin

We had originally started this project hoping to be able to detect the notes played on a violin, but
as discussed in the motivation/goals sections, we moved our focus to cellos. Therefore, given more
time to work on this project, and now with our better understanding after having created a model
for cellos, it would be exciting to go back and try to train a model for violins.

10 Acknowledgements

We would like to thank Vivien Nguyen and Sunnie Kim for their guidance and advice throughout
this final project, as well as our friend Andrew Chen for suggesting that we consider cellos instead
of violins. In addition, thank you to Professor Olga Russakovsky for teaching us so much about
computer vision this semester.

References

[1] Gómez, Emilia et al. “Visual Music Transcription of Clarinet Video Recordings Trained with
Audio-Based Labelled Data”. 2017 IEEE International Conference on Computer Vision Work-
shops (ICCVW). N.p., 2017. 463–470. Web. https://ieeexplore.ieee.org/document/8265272

[2] Zhao, Hang et al. “The Sound of Pixels”. CoRR abs/1804.03160 (2018): n. pag. Web.
https://arxiv.org/abs/1804.03160

[3] https://docs.opencv.org/3.4/d9/db0/tutorial hough lines.html

[4] https://stackoverflow.com/questions/45075638/graph-k-nn-decision-boundaries-in-matplotlib

10.1 Links Used to Create Our YouTube Cello Dataset

• https://www.youtube.com/watch?v=s92f3CW9IdQ

• https://www.youtube.com/watch?v=KJqNKq-qSWQ

• https://www.youtube.com/watch?v=s0zprgXLpeE

• https://www.youtube.com/watch?v=HkjIXDBz4e8

• https://www.youtube.com/watch?v=PqR36Drhn k

• https://www.youtube.com/watch?v=wJlBkaIMOlkt=843s

• https://www.youtube.com/watch?v=Zc4pY6dQNFAt=40s

• https://www.youtube.com/watch?v=qPdEw6I86dg

• https://www.youtube.com/watch?v=xOjTsaHjBmUt=294s

• https://www.youtube.com/watch?v=JxKtiyNDgB4

• https://www.youtube.com/watch?v=SPe1MvW7CGs

• https://www.youtube.com/watch?v=wzdpJkrkQ4s

10



• https://www.youtube.com/watch?v=w-4aicGa9E0

• https://www.youtube.com/watch?v=u-jI1dFKWZ8

• https://www.youtube.com/watch?v=StV wY2q4FQ

• https://www.youtube.com/watch?v=6I6S KkYei4

• https://www.youtube.com/watch?v=BDPM3op ZRs

• https://www.youtube.com/watch?v=roVybvwArbE

• https://www.youtube.com/watch?v=m7Gp18SD0js

• https://www.youtube.com/watch?v=f xJI-EA0ys

11


	Motivation/Goal
	Related work
	Approach
	Design Decisions
	Framing around the cello
	Hough Transform
	k-Nearest Neighbors

	Implementation
	Dataset
	Detect the lines corresponding to the bow and on the fingerboard of the cello
	Optimize our custom Hough transform function
	Calculate the theta values related to the lines detected
	Train a k-nearest neighbors model on the two theta values

	Results
	Strengths and Weaknesses of our System
	Strength: Detects the bow and fingerboard accurately:
	Strength: Optimization:
	Limitation: Video Frame Size:
	Limitation: Restriction on Cellist’s Movement:
	Limitation: Small dataset size:

	Conclusion
	Future Work
	Flexibility in Video Input
	Running in Real Time
	View from Different Camera Angles
	Detect Notes Played
	Train for Violin

	Acknowledgements
	Links Used to Create Our YouTube Cello Dataset


