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Abstract

My independent work centers around a paper by Bhamre et. al that proposes a new

method of Covariance Wiener Filtering (CWF) to extract the underlying signal from

a large number of noisy 2D projections. This method requires the estimation of the

covariance matrix of the underlying signal of these 2D images, for which the paper

provides an adequate method. Under Dr. Nick Marshall’s guidance, I sought to find

a way to further improve the efficiency of this methodology. In the end, Nick and

other collaborators completed a paper outlining their “Fast-CWF” solution, which

results in a speedup of two magnitudes on large datasets. In this report, I will discuss

my contributions to Nick and my work, specifically in regards to what we call the

“lookup table” method.
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Chapter 1

Fast Covariance Estimation

Techniques

1.1 Motivation

My work is based on a paper called “Denoising and covariance estimation of single

particle cryo-EM images” by Bhamre et. al. Essentially, this paper sought to take a

large number of noisy 2D projections of a macromolecule, which can be seen in Figure

1.1, and denoise the images to unveil the underlying signal. Previous methods apply

clustering algorithm to group the projections and take class averages of those groups

to isolate the signal (Figure 1.1).

Figure 1.1: Noisy projections and results of class-average approach to extract signal
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In contrast, this paper proposes a new method called Covariance Weiner Filtering,

which is unique in that it is able to complete this denoising process on an image-by-

image basis, as seen in Figure 1.2. To do so, this method requires the pre-estimation

of the covariance matrix of the underlying signal in these images. The paper provides

an efficient methodology for this computation using conjugate gradient, but the goal

of our work is to improve this further.

Figure 1.2: Results of Covariance Weiner Filtering approach to extract signal

1.2 Introduction

The images in the paper dataset are modeled with a convolutional operation yi =

ai ◦ xi + ei, where yi are the observed images and ai are known convolutional filters

that are inherent properties of the lenses the images were taken with. Importantly,

as matrices describing lenses, we assume that the ai are radially symmetric. We can

now apply a Fourier transform to arrive at the following equation:

Yi = AiXi + ϵi

This equation uses matrix operations instead, which allows for techniques like

differentiation. From here, we can now seek to solve for the covariance matrix of Xi.
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1.3 Solving for Covariance Matrix

We begin with the previous expression:

Yi = AiXi + ϵi

For this section of the paper, we assume that the noise is white noise, i.e. that

Xi ∼ N(0, σ), so taking the expectation on both sides, we get that

E[Yi] = E[AiXi + ϵi]

= AiE[Xi] + E[ϵi]

= AiE[Xi]

Computing the covariance of Yi, we can get the following expression:

E[(Yi − E[Yi])(Yi − E[Yi])
T ] = E[(Yi − AiE[Xi])(Yi − AiE[Xi])

T ]

= E[Ai(Xi − E[Xi])(Xi − E[Xi])
TAT

i ]

= AiE[(Xi − E[Xi])(Xi − E[Xi])
T ]AT

i

= AiΣA
T
i + σ2I

Since noise exists here, we can introduce a loss function of the sum of the norms

of the difference between the two sides. Our covariance matrix estimation is thus the

solution to the corresponding optimization problem.

L(Σ) =
n∑

i=1

∥(Yi − E[Yi])(Yi − E[Yi])
T − (AiΣA

T
i + σ2I)∥F

Σ̂ = argmin
Σ

L(Σ)
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Differentiating and setting to zero, we get the following crucial equation:

n∑
i=1

AT
i AiΣ̂A

T
i Ai =

n∑
i=1

AT
i CiAi −

n∑
i=1

σ2AT
i Ai

where µ = E[Xi] and Ci = (Yi − Aiµ)(Yi − Aiµ)
T . This yields an equation that

contains what we are trying to compute, Xi, and where everything else is known,

i.e. Ai and Yi. In theory, we could compute this directly, but when working with a

large number of large images this method becomes intractable. To proceed, the paper

uses a method called conjugate gradient, which treats the left-hand side as a linear

operator and solves for an approximate solution in an iterative manner. This is more

efficient than brute force, but our goal is to optimize this process even further.

1.4 Methodology

Our idea to do so is to estimate the elements in this equation quickly even if we lose

some accuracy, so long as the relative error is below a threshold. One preliminary

step to consider is to efficiently estimate
∑

AT
i Ai, which is the right-most term in the

central equation. Brute-force computation has computational complexity of O(nL3),

so this is the baseline that all of our results are compared against. Recall that Ai is

radially symmetric; to take advantage of this property, we outline what we call the

lookup table method, which is as follows:

We sample the points along the diagonal and store their values in a vector v as

well as the distances from the center of the image. We then precompute the pairwise

products of those values and store them in a matrix B = vvT . We can now define

a function h that takes a pixel location and outputs the sampled point from the

diagonal with largest distance from the center less than that of our pixel. Once we’ve
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done so, we can follow this equation to estimate each element of ATA:

(ATA)i,j =
L∑

k=1

Ak,iAk,j ≈
L∑

k=1

vh(k,i)vh(k,j) =
L∑

k=1

Bh(k,i),h(k,j)

In short, we rewrite each entry as a sum of products of values of A as the result

of matrix multiplication and then use the h function to estimate each of those values

of A by replacing it with the closest sampled point. Since there are limited combi-

nations of sampled points, we can precompute their pairwise products to minimize

recalculations. Essentially, instead of computing the sum of products of values from

A, we are now computing the sum of values from B.

Once here, we can also introduce linear splines. The previous calculation replaces

each value of A with only one of the two sampled pixels surrounding it; incorporating

the values of both as well as the distance of the pixel from each significantly improves

our estimates. With vectorizing, the linear spline calculation takes the following form:

ATA ≈ W0,0C0,0 +W0,1C0,1 +W1,0C1,0 +W1,1C1,1

(C0,0)i,j =
∑L

k=1 Bh(k,i),h(k,j) (C0,1)i,j =
∑L

k=1 Bh(k,i),h(k,j)+1

(C1,0)i,j =
∑L

k=1 Bh(k,i)+1,h(k,j) (C1,1)i,j =
∑L

k=1 Bh(k,i)+1,h(k,j)+1

In other words, ATA is approximately a weighted average of four slightly different

calculations, where the weight matrices are functions of the distances from the pixels

to the surrounding sample pixels. All operations in this calculation are element-wise.

In terms of time complexity, this methodology is on the order of O(L3 + nL2), which

asymptotically beats the brute force computation.
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1.5 Results

To empirically test our method, we ran each method 1000 times and took the average

of the time elapsed and relative error. We can see in Table 1.1 that the weighted

method is indeed less affected by an increase in image count than the direct compu-

tation, so even though the times were similar for the largest size we tested, we can

assume that asymptotically the weighted method is faster.

Table 1.1: Time Elapsed Results

# of Images Direct Comp Unweighted Weighted fbpca 1 fbpca 2

1024 0.042 0.100 0.139 0.118 0.129
2048 0.077 0.116 0.144 0.162 0.170
4096 0.150 0.150 0.165 0.288 0.310

Direct Comp: direct computation.

Compared to the unweighted method, the weighted method also significantly re-

duced relative error to just 1.3% (Table 1.2). More tests could have been done, but

there were technical issues with the computing cluster, so this is the extent of the

empirical results available.

Table 1.2: Relative Error Results

# of Images Direct Comp Unweighted Weighted fbpca 1 fbpca 2

1024 - 0.117 0.013 0.340 0.339
2048 - 0.118 0.013 0.319 0.332
4096 - 0.118 0.013 0.328 0.330

Direct Comp: direct computation.

In addition to the unweighted and weighted methods, we also implemented a pair

of estimation methods involving Facebook’s proprietary fast PCA estimation pack-

age, denoted ”fbpca 1” and ”fbpca 2”. These methods hold potential because PCA
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decomposes A into some matrices that are diagonal matrices or cancel in the ATA op-

eration, greatly simplifying the overall calculation. However, the decomposition itself

is expensive, and we can see that empirically the faster computation cannot make up

for that inefficiency. The relative error also explodes for images past a certain size.

Finally, in addition to our efforts to efficiently compute different parts of the co-

variance equation, we also explored more high-level avenues of how to replace the con-

jugate gradient process, such as eigenvalue analysis and Fourier-Bessel series, which

would incorporate a special form of Fourier transform using Bessel functions.

1.6 Conclusion

In all, my contributions were largely probing and did not lead to any major break-

throughs. Even so, I am very happy with the progress that we made, and I learned

a lot about cryo-EM imaging, linear algebra intricacies, and the research process as

a whole.

As I mentioned, I worked with Nick during the spring. As the semester came to

end, I shifted my focus to my summer internship, but in the meantime, Nick and the

rest of the team had a great summer of their own and were able to make significant

progress and publish a paper. They ended up modifying and refining the Fourier-

Bessel method that we had tried near the end of the semester. Naturally, I was

a bit disappointed that I could not directly contribute to the contents of the final

paper, but I believe that my work helped illuminate ideas and avenues for Nick and

his collaborators to explore. In addition, they very graciously mentioned me in their

acknowledgements, which I very much appreciated.
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